Fixed:
- Price: €800K-€1.5M, Sunseeker added
- Agent 1: Joe Trader persona + actual sale ads research
- Ignored meilisearch binary + data/ (too large for GitHub)
- SESSION_DEBUG_BLOCKERS.md created
Ready for Session 1 launch.
🤖 Generated with Claude Code
458 lines
15 KiB
JavaScript
458 lines
15 KiB
JavaScript
/**
|
|
* OCR Worker - BullMQ background job processor for document OCR
|
|
*
|
|
* Features:
|
|
* - Process OCR jobs from 'ocr-jobs' queue
|
|
* - Update job progress in real-time (0-100%)
|
|
* - Extract text from each PDF page
|
|
* - Save OCR results to document_pages table
|
|
* - Index pages in Meilisearch
|
|
* - Update document status to 'indexed' when complete
|
|
* - Handle failures and update job status
|
|
*/
|
|
|
|
import dotenv from 'dotenv';
|
|
import { Worker } from 'bullmq';
|
|
import Redis from 'ioredis';
|
|
import { v4 as uuidv4 } from 'uuid';
|
|
import { dirname, join } from 'path';
|
|
import { fileURLToPath } from 'url';
|
|
import { getDb } from '../config/db.js';
|
|
import { extractTextFromPDF } from '../services/ocr-hybrid.js';
|
|
import { cleanOCRText, extractTextFromImage } from '../services/ocr.js';
|
|
import { indexDocumentPage } from '../services/search.js';
|
|
import { extractImagesFromPage } from './image-extractor.js';
|
|
import { extractSections, mapPagesToSections } from '../services/section-extractor.js';
|
|
|
|
const __dirname = dirname(fileURLToPath(import.meta.url));
|
|
|
|
// Load environment variables from server directory
|
|
dotenv.config({ path: join(__dirname, '../.env') });
|
|
|
|
// Redis connection for BullMQ
|
|
const connection = new Redis({
|
|
host: process.env.REDIS_HOST || '127.0.0.1',
|
|
port: process.env.REDIS_PORT || 6379,
|
|
maxRetriesPerRequest: null
|
|
});
|
|
|
|
/**
|
|
* Process an OCR job
|
|
*
|
|
* @param {Object} job - BullMQ job object
|
|
* @param {Object} job.data - Job data
|
|
* @param {string} job.data.documentId - Document ID to process
|
|
* @param {string} job.data.jobId - OCR job ID in database
|
|
* @param {string} job.data.filePath - Path to PDF file
|
|
* @returns {Promise<Object>} - Processing result
|
|
*/
|
|
async function processOCRJob(job) {
|
|
const { documentId, jobId, filePath } = job.data;
|
|
const db = getDb();
|
|
|
|
console.log(`[OCR Worker] Starting job ${jobId} for document ${documentId}`);
|
|
|
|
try {
|
|
// Update job status to processing
|
|
db.prepare(`
|
|
UPDATE ocr_jobs
|
|
SET status = 'processing',
|
|
started_at = ?,
|
|
progress = 0
|
|
WHERE id = ?
|
|
`).run(Math.floor(Date.now() / 1000), jobId);
|
|
|
|
// Get document info
|
|
const document = db.prepare(`
|
|
SELECT * FROM documents WHERE id = ?
|
|
`).get(documentId);
|
|
|
|
if (!document) {
|
|
throw new Error(`Document not found: ${documentId}`);
|
|
}
|
|
|
|
const totalPages = document.page_count || 0;
|
|
|
|
// Progress tracking
|
|
let currentProgress = 0;
|
|
|
|
const updateProgress = (pageNum, total) => {
|
|
currentProgress = Math.floor((pageNum / total) * 100);
|
|
|
|
// Update database progress
|
|
db.prepare(`
|
|
UPDATE ocr_jobs
|
|
SET progress = ?
|
|
WHERE id = ?
|
|
`).run(currentProgress, jobId);
|
|
|
|
// Update BullMQ job progress
|
|
job.updateProgress(currentProgress);
|
|
|
|
console.log(`[OCR Worker] Progress: ${currentProgress}% (page ${pageNum}/${total})`);
|
|
};
|
|
|
|
// Extract text from PDF using OCR service
|
|
console.log(`[OCR Worker] Extracting text from ${filePath}`);
|
|
|
|
const ocrResults = await extractTextFromPDF(filePath, {
|
|
language: document.language || 'eng',
|
|
onProgress: updateProgress
|
|
});
|
|
|
|
console.log(`[OCR Worker] OCR extraction complete: ${ocrResults.length} pages processed`);
|
|
|
|
// Process each page result
|
|
const now = Math.floor(Date.now() / 1000);
|
|
|
|
for (const pageResult of ocrResults) {
|
|
const { pageNumber, text, confidence, error } = pageResult;
|
|
|
|
try {
|
|
// Generate page ID
|
|
const pageId = `page_${documentId}_${pageNumber}`;
|
|
|
|
// Clean OCR text
|
|
const cleanedText = text ? cleanOCRText(text) : '';
|
|
|
|
// Check if page already exists
|
|
const existingPage = db.prepare(`
|
|
SELECT id FROM document_pages
|
|
WHERE document_id = ? AND page_number = ?
|
|
`).get(documentId, pageNumber);
|
|
|
|
if (existingPage) {
|
|
// Update existing page
|
|
db.prepare(`
|
|
UPDATE document_pages
|
|
SET ocr_text = ?,
|
|
ocr_confidence = ?,
|
|
ocr_language = ?,
|
|
ocr_completed_at = ?,
|
|
metadata = ?
|
|
WHERE document_id = ? AND page_number = ?
|
|
`).run(
|
|
cleanedText,
|
|
confidence,
|
|
document.language || 'en',
|
|
now,
|
|
JSON.stringify({ error: error || null }),
|
|
documentId,
|
|
pageNumber
|
|
);
|
|
|
|
console.log(`[OCR Worker] Updated page ${pageNumber} (confidence: ${confidence.toFixed(2)})`);
|
|
} else {
|
|
// Insert new page
|
|
db.prepare(`
|
|
INSERT INTO document_pages (
|
|
id, document_id, page_number,
|
|
ocr_text, ocr_confidence, ocr_language, ocr_completed_at,
|
|
metadata, created_at
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
|
`).run(
|
|
pageId,
|
|
documentId,
|
|
pageNumber,
|
|
cleanedText,
|
|
confidence,
|
|
document.language || 'en',
|
|
now,
|
|
JSON.stringify({ error: error || null }),
|
|
now
|
|
);
|
|
|
|
console.log(`[OCR Worker] Created page ${pageNumber} (confidence: ${confidence.toFixed(2)})`);
|
|
}
|
|
|
|
// Index page in Meilisearch (only if text was successfully extracted)
|
|
if (cleanedText && !error) {
|
|
try {
|
|
await indexDocumentPage({
|
|
pageId: pageId,
|
|
documentId: documentId,
|
|
pageNumber: pageNumber,
|
|
text: cleanedText,
|
|
confidence: confidence
|
|
});
|
|
|
|
console.log(`[OCR Worker] Indexed page ${pageNumber} in Meilisearch`);
|
|
} catch (indexError) {
|
|
console.error(`[OCR Worker] Failed to index page ${pageNumber}:`, indexError.message);
|
|
// Continue processing other pages even if indexing fails
|
|
}
|
|
}
|
|
|
|
// Extract and process images from this page
|
|
try {
|
|
console.log(`[OCR Worker] Extracting images from page ${pageNumber}`);
|
|
|
|
const extractedImages = await extractImagesFromPage(filePath, pageNumber, documentId);
|
|
|
|
console.log(`[OCR Worker] Found ${extractedImages.length} image(s) on page ${pageNumber}`);
|
|
|
|
// Process each extracted image
|
|
for (const image of extractedImages) {
|
|
try {
|
|
console.log(`[OCR Worker] Running OCR on image: ${image.relativePath}`);
|
|
|
|
// Run Tesseract OCR on the extracted image
|
|
const imageOCR = await extractTextFromImage(image.path, document.language || 'eng');
|
|
|
|
const imageText = imageOCR.text ? cleanOCRText(imageOCR.text) : '';
|
|
const imageConfidence = imageOCR.confidence || 0;
|
|
|
|
console.log(`[OCR Worker] Image OCR complete (confidence: ${imageConfidence.toFixed(2)}, text length: ${imageText.length})`);
|
|
|
|
// Generate unique image ID for database
|
|
const imageDbId = `${image.id}_${Date.now()}`;
|
|
|
|
// Store image in document_images table
|
|
db.prepare(`
|
|
INSERT INTO document_images (
|
|
id, documentId, pageNumber, imageIndex,
|
|
imagePath, imageFormat, width, height,
|
|
position, extractedText, textConfidence,
|
|
createdAt
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
|
`).run(
|
|
imageDbId,
|
|
documentId,
|
|
pageNumber,
|
|
image.imageIndex,
|
|
image.relativePath,
|
|
image.format,
|
|
image.width,
|
|
image.height,
|
|
JSON.stringify(image.position),
|
|
imageText,
|
|
imageConfidence,
|
|
now
|
|
);
|
|
|
|
console.log(`[OCR Worker] Stored image metadata in database: ${imageDbId}`);
|
|
|
|
// Index image in Meilisearch with type='image'
|
|
if (imageText && imageText.length > 0) {
|
|
try {
|
|
// Build a search document for the image
|
|
const imageSearchDoc = {
|
|
id: `image_${documentId}_p${pageNumber}_i${image.imageIndex}`,
|
|
vertical: 'boating', // Default, will be enriched by indexDocumentPage
|
|
organizationId: document.organization_id,
|
|
organizationName: 'Unknown Organization',
|
|
entityId: document.entity_id || 'unknown',
|
|
entityName: 'Unknown Entity',
|
|
entityType: document.entity_type || 'unknown',
|
|
docId: documentId,
|
|
userId: document.uploaded_by,
|
|
documentType: 'image', // Mark as image type
|
|
title: `Image from page ${pageNumber}`,
|
|
pageNumber: pageNumber,
|
|
text: imageText,
|
|
language: document.language || 'en',
|
|
ocrConfidence: imageConfidence,
|
|
createdAt: document.created_at,
|
|
updatedAt: now,
|
|
// Image-specific metadata
|
|
imagePath: image.relativePath,
|
|
imageWidth: image.width,
|
|
imageHeight: image.height
|
|
};
|
|
|
|
// Get Meilisearch index and add document
|
|
const { getMeilisearchIndex } = await import('../config/meilisearch.js');
|
|
const index = await getMeilisearchIndex();
|
|
await index.addDocuments([imageSearchDoc]);
|
|
|
|
console.log(`[OCR Worker] Indexed image in Meilisearch: ${imageSearchDoc.id}`);
|
|
} catch (imageIndexError) {
|
|
console.error(`[OCR Worker] Failed to index image in Meilisearch:`, imageIndexError.message);
|
|
// Continue processing
|
|
}
|
|
}
|
|
} catch (imageOCRError) {
|
|
console.error(`[OCR Worker] Error processing image ${image.imageIndex} on page ${pageNumber}:`, imageOCRError.message);
|
|
// Continue with next image
|
|
}
|
|
}
|
|
|
|
// Update document image count
|
|
if (extractedImages.length > 0) {
|
|
db.prepare(`
|
|
UPDATE documents
|
|
SET imageCount = COALESCE(imageCount, 0) + ?
|
|
WHERE id = ?
|
|
`).run(extractedImages.length, documentId);
|
|
}
|
|
} catch (imageExtractionError) {
|
|
console.error(`[OCR Worker] Error extracting images from page ${pageNumber}:`, imageExtractionError.message);
|
|
// Continue processing other pages
|
|
}
|
|
} catch (pageError) {
|
|
console.error(`[OCR Worker] Error processing page ${pageNumber}:`, pageError.message);
|
|
// Continue processing other pages
|
|
}
|
|
}
|
|
|
|
// Extract section metadata
|
|
console.log('[OCR Worker] Extracting section metadata');
|
|
try {
|
|
const sections = await extractSections(filePath, ocrResults);
|
|
const pageMap = mapPagesToSections(sections, totalPages);
|
|
|
|
console.log(`[OCR Worker] Mapping ${pageMap.size} pages to sections`);
|
|
|
|
// Update each page with section metadata
|
|
const updateSectionStmt = db.prepare(`
|
|
UPDATE document_pages
|
|
SET section = ?,
|
|
section_key = ?,
|
|
section_order = ?
|
|
WHERE document_id = ? AND page_number = ?
|
|
`);
|
|
|
|
for (const [pageNum, sectionData] of pageMap.entries()) {
|
|
updateSectionStmt.run(
|
|
sectionData.section,
|
|
sectionData.sectionKey,
|
|
sectionData.sectionOrder,
|
|
documentId,
|
|
pageNum
|
|
);
|
|
}
|
|
|
|
console.log('[OCR Worker] Section metadata stored successfully');
|
|
} catch (sectionError) {
|
|
console.error('[OCR Worker] Section extraction failed:', sectionError.message);
|
|
// Continue even if section extraction fails
|
|
}
|
|
|
|
// Update document status to indexed and mark images as extracted
|
|
db.prepare(`
|
|
UPDATE documents
|
|
SET status = 'indexed',
|
|
imagesExtracted = 1,
|
|
updated_at = ?
|
|
WHERE id = ?
|
|
`).run(now, documentId);
|
|
|
|
// Mark job as completed
|
|
db.prepare(`
|
|
UPDATE ocr_jobs
|
|
SET status = 'completed',
|
|
progress = 100,
|
|
completed_at = ?
|
|
WHERE id = ?
|
|
`).run(now, jobId);
|
|
|
|
console.log(`[OCR Worker] Job ${jobId} completed successfully`);
|
|
|
|
// Extract Table of Contents as post-processing step
|
|
try {
|
|
const { extractTocFromDocument } = await import('../services/toc-extractor.js');
|
|
const tocResult = await extractTocFromDocument(documentId);
|
|
|
|
if (tocResult.success && tocResult.entriesCount > 0) {
|
|
console.log(`[OCR Worker] TOC extracted: ${tocResult.entriesCount} entries from ${tocResult.pages.length} page(s)`);
|
|
} else {
|
|
console.log(`[OCR Worker] No TOC detected or extraction skipped`);
|
|
}
|
|
} catch (tocError) {
|
|
// Don't fail the whole job if TOC extraction fails
|
|
console.error(`[OCR Worker] TOC extraction error:`, tocError.message);
|
|
}
|
|
|
|
return {
|
|
success: true,
|
|
documentId: documentId,
|
|
pagesProcessed: ocrResults.length
|
|
};
|
|
} catch (error) {
|
|
console.error(`[OCR Worker] Job ${jobId} failed:`, error);
|
|
|
|
// Update job status to failed
|
|
const now = Math.floor(Date.now() / 1000);
|
|
|
|
db.prepare(`
|
|
UPDATE ocr_jobs
|
|
SET status = 'failed',
|
|
error = ?,
|
|
completed_at = ?
|
|
WHERE id = ?
|
|
`).run(error.message, now, jobId);
|
|
|
|
// Update document status to failed
|
|
db.prepare(`
|
|
UPDATE documents
|
|
SET status = 'failed',
|
|
updated_at = ?
|
|
WHERE id = ?
|
|
`).run(now, documentId);
|
|
|
|
throw error; // Re-throw to mark BullMQ job as failed
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create and start the OCR worker
|
|
*/
|
|
export function createOCRWorker() {
|
|
const worker = new Worker('ocr-processing', processOCRJob, {
|
|
connection,
|
|
concurrency: parseInt(process.env.OCR_CONCURRENCY || '2'), // Process 2 documents at a time
|
|
limiter: {
|
|
max: 5, // Max 5 jobs
|
|
duration: 60000 // Per minute (to avoid overloading Tesseract)
|
|
}
|
|
});
|
|
|
|
// Worker event handlers
|
|
worker.on('completed', (job, result) => {
|
|
console.log(`[OCR Worker] Job ${job.id} completed:`, result);
|
|
});
|
|
|
|
worker.on('failed', (job, error) => {
|
|
console.error(`[OCR Worker] Job ${job?.id} failed:`, error.message);
|
|
});
|
|
|
|
worker.on('error', (error) => {
|
|
console.error('[OCR Worker] Worker error:', error);
|
|
});
|
|
|
|
worker.on('ready', () => {
|
|
console.log('[OCR Worker] Worker is ready and waiting for jobs');
|
|
});
|
|
|
|
console.log('[OCR Worker] Worker started');
|
|
|
|
return worker;
|
|
}
|
|
|
|
/**
|
|
* Graceful shutdown handler
|
|
*/
|
|
export async function shutdownWorker(worker) {
|
|
console.log('[OCR Worker] Shutting down...');
|
|
|
|
await worker.close();
|
|
await connection.quit();
|
|
|
|
console.log('[OCR Worker] Shutdown complete');
|
|
}
|
|
|
|
// Start worker if run directly
|
|
if (import.meta.url === `file://${process.argv[1]}`) {
|
|
const worker = createOCRWorker();
|
|
|
|
// Handle shutdown signals
|
|
process.on('SIGTERM', async () => {
|
|
await shutdownWorker(worker);
|
|
process.exit(0);
|
|
});
|
|
|
|
process.on('SIGINT', async () => {
|
|
await shutdownWorker(worker);
|
|
process.exit(0);
|
|
});
|
|
}
|