Property information temporarily unavailable
)} ``` **IF.SECURITY.CHECK Application:** Regulatory Agent vetoes defense deployment when context is ambiguous rather than guessing threat severity: ```yaml regulatory_decision: threat_id: "T-2847" context_completeness: 0.42 # Below 0.70 threshold decision: "VETO" reasoning: "Insufficient context to assess false-positive risk" required_evidence: - "Proof-of-concept demonstration" - "Known CVE reference" - "Historical precedent for attack pattern" ``` **Philosophy:** Fallibilism (Peirce) acknowledges all knowledge as provisional. Rather than project confidence when uncertain, agents admit limitations. This prevents cascading failures where one agent's hallucinated "fact" becomes another's input. #### Principle 4: Schema-Tolerant Parsing **Definition:** Accept multiple valid formats (snake_case/camelCase, optional fields, varied encodings) rather than enforce singular canonical schemas. **Implementation Pattern:** ```typescript // processwire-api.ts - Schema tolerance example interface PropertyAPIResponse { metro_stations?: string[]; // Python backend (snake_case) metroStations?: string[]; // JavaScript backend (camelCase) stations?: string[]; // Legacy field name } function extractMetroStations(api: PropertyAPIResponse): string[] { return api.metro_stations || api.metroStations || api.stations || []; // Tolerates 3 schema variants; returns empty array if none present } ``` **IF.SECURITY.CHECK Application:** Thymic Selection trains regulatory agents on varied codebases (enterprise Java, startup Python, open-source Rust) to recognize legitimate patterns across divergent schemas: ```yaml thymic_training: codebase_types: - enterprise: "verbose_naming, excessive_abstraction, XML configs" - startup: "terse_names, minimal_types, JSON configs" - opensource: "mixed_conventions, contributor_diversity" tolerance_outcome: false_positives: 0.04% # Accepts schema diversity false_negatives: 0.08% # Maintains security rigor ``` **Philosophy:** Duhem-Quine Thesis—theories underdetermined by evidence. No single "correct" schema exists; multiple valid representations coexist. Rigid schema enforcement creates brittleness; tolerance enables robust integration across heterogeneous systems. #### Principle 5: Gate Client-Only Features **Definition:** Align server-side rendering (SSR) and client-side rendering (CSR) initial states to prevent hydration mismatches. Multi-agent systems analogously require consensus alignment. **Implementation Pattern:** ```typescript // Navigation.tsx - SSR/CSR alignment export default function Navigation() { const [isClient, setIsClient] = useState(false); useEffect(() => { setIsClient(true); // Gate client-only features }, []); return ( ); } ``` **IF.SECURITY.CHECK Application:** Multi-agent consensus requires initial baseline alignment before enhanced analysis: ```python def consensus_workflow(threat): # Stage 1: Baseline scan (SSR equivalent - deterministic, universal) baseline_threats = baseline_scan(threat) if not baseline_threats: return {"action": "PASS", "agents": "baseline"} # Stage 2: Multi-agent consensus (CSR equivalent - enhanced, context-aware) agent_votes = [agent.evaluate(threat) for agent in agent_panel] if quorum_reached(agent_votes, threshold=0.80): return {"action": "INVESTIGATE", "confidence": calculate_confidence(agent_votes)} else: return {"action": "VETO", "reason": "consensus_failure"} ``` **Philosophy:** Coherentism (Quine)—beliefs justified through network coherence. SSR/CSR mismatches create contradictions (hydration errors); multi-agent contradictions undermine trust. Alignment ensures coherent state transitions. #### Principle 6: Progressive Enhancement **Definition:** Core functionality stands without enhancements; features activate only when beneficial. Graduated response scales intervention to threat severity. **Implementation Pattern:** ```typescript // Image.tsx - Progressive enhancement