Property information temporarily unavailable
-)} -``` - -**IF.SECURITY.CHECK Application:** -Regulatory Agent vetoes defense deployment when context is ambiguous rather than guessing threat severity: - -```yaml -regulatory_decision: - threat_id: "T-2847" - context_completeness: 0.42 # Below 0.70 threshold - decision: "VETO" - reasoning: "Insufficient context to assess false-positive risk" - required_evidence: - - "Proof-of-concept demonstration" - - "Known CVE reference" - - "Historical precedent for attack pattern" -``` - -**Philosophy:** Fallibilism (Peirce) acknowledges all knowledge as provisional. Rather than project confidence when uncertain, agents admit limitations. This prevents cascading failures where one agent's hallucinated "fact" becomes another's input. - -#### Principle 4: Schema-Tolerant Parsing - -**Definition:** Accept multiple valid formats (snake_case/camelCase, optional fields, varied encodings) rather than enforce singular canonical schemas. - -**Implementation Pattern:** -```typescript -// processwire-api.ts - Schema tolerance example -interface PropertyAPIResponse { - metro_stations?: string[]; // Python backend (snake_case) - metroStations?: string[]; // JavaScript backend (camelCase) - stations?: string[]; // Legacy field name -} - -function extractMetroStations(api: PropertyAPIResponse): string[] { - return api.metro_stations || api.metroStations || api.stations || []; - // Tolerates 3 schema variants; returns empty array if none present -} -``` - -**IF.SECURITY.CHECK Application:** -Thymic Selection trains regulatory agents on varied codebases (enterprise Java, startup Python, open-source Rust) to recognize legitimate patterns across divergent schemas: - -```yaml -thymic_training: - codebase_types: - - enterprise: "verbose_naming, excessive_abstraction, XML configs" - - startup: "terse_names, minimal_types, JSON configs" - - opensource: "mixed_conventions, contributor_diversity" - - tolerance_outcome: - false_positives: 0.04% # Accepts schema diversity - false_negatives: 0.08% # Maintains security rigor -``` - -**Philosophy:** Duhem-Quine Thesis—theories underdetermined by evidence. No single "correct" schema exists; multiple valid representations coexist. Rigid schema enforcement creates brittleness; tolerance enables robust integration across heterogeneous systems. - -#### Principle 5: Gate Client-Only Features - -**Definition:** Align server-side rendering (SSR) and client-side rendering (CSR) initial states to prevent hydration mismatches. Multi-agent systems analogously require consensus alignment. - -**Implementation Pattern:** -```typescript -// Navigation.tsx - SSR/CSR alignment -export default function Navigation() { - const [isClient, setIsClient] = useState(false); - - useEffect(() => { - setIsClient(true); // Gate client-only features - }, []); - - return ( - - ); -} -``` - -**IF.SECURITY.CHECK Application:** -Multi-agent consensus requires initial baseline alignment before enhanced analysis: - -```python -def consensus_workflow(threat): - # Stage 1: Baseline scan (SSR equivalent - deterministic, universal) - baseline_threats = baseline_scan(threat) - - if not baseline_threats: - return {"action": "PASS", "agents": "baseline"} - - # Stage 2: Multi-agent consensus (CSR equivalent - enhanced, context-aware) - agent_votes = [agent.evaluate(threat) for agent in agent_panel] - - if quorum_reached(agent_votes, threshold=0.80): - return {"action": "INVESTIGATE", "confidence": calculate_confidence(agent_votes)} - else: - return {"action": "VETO", "reason": "consensus_failure"} -``` - -**Philosophy:** Coherentism (Quine)—beliefs justified through network coherence. SSR/CSR mismatches create contradictions (hydration errors); multi-agent contradictions undermine trust. Alignment ensures coherent state transitions. - -#### Principle 6: Progressive Enhancement - -**Definition:** Core functionality stands without enhancements; features activate only when beneficial. Graduated response scales intervention to threat severity. - -**Implementation Pattern:** -```typescript -// Image.tsx - Progressive enhancement -