Property information temporarily unavailable
+)} +``` + +**IF.armour Application:** +Regulatory Agent vetoes defense deployment when context is ambiguous rather than guessing threat severity: + +```yaml +regulatory_decision: + threat_id: "T-2847" + context_completeness: 0.42 # Below 0.70 threshold + decision: "VETO" + reasoning: "Insufficient context to assess false-positive risk" + required_evidence: + - "Proof-of-concept demonstration" + - "Known CVE reference" + - "Historical precedent for attack pattern" +``` + +**Philosophy:** Fallibilism (Peirce) acknowledges all knowledge as provisional. Rather than project confidence when uncertain, agents admit limitations. This prevents cascading failures where one agent's hallucinated "fact" becomes another's input. + +#### Principle 4: Schema-Tolerant Parsing + +**Definition:** Accept multiple valid formats (snake_case/camelCase, optional fields, varied encodings) rather than enforce singular canonical schemas. + +**Implementation Pattern:** +```typescript +// processwire-api.ts - Schema tolerance example +interface PropertyAPIResponse { + metro_stations?: string[]; // Python backend (snake_case) + metroStations?: string[]; // JavaScript backend (camelCase) + stations?: string[]; // Legacy field name +} + +function extractMetroStations(api: PropertyAPIResponse): string[] { + return api.metro_stations || api.metroStations || api.stations || []; + // Tolerates 3 schema variants; returns empty array if none present +} +``` + +**IF.armour Application:** +Thymic Selection trains regulatory agents on varied codebases (enterprise Java, startup Python, open-source Rust) to recognize legitimate patterns across divergent schemas: + +```yaml +thymic_training: + codebase_types: + - enterprise: "verbose_naming, excessive_abstraction, XML configs" + - startup: "terse_names, minimal_types, JSON configs" + - opensource: "mixed_conventions, contributor_diversity" + + tolerance_outcome: + false_positives: 0.04% # Accepts schema diversity + false_negatives: 0.08% # Maintains security rigor +``` + +**Philosophy:** Duhem-Quine Thesis—theories underdetermined by evidence. No single "correct" schema exists; multiple valid representations coexist. Rigid schema enforcement creates brittleness; tolerance enables robust integration across heterogeneous systems. + +#### Principle 5: Gate Client-Only Features + +**Definition:** Align server-side rendering (SSR) and client-side rendering (CSR) initial states to prevent hydration mismatches. Multi-agent systems analogously require consensus alignment. + +**Implementation Pattern:** +```typescript +// Navigation.tsx - SSR/CSR alignment +export default function Navigation() { + const [isClient, setIsClient] = useState(false); + + useEffect(() => { + setIsClient(true); // Gate client-only features + }, []); + + return ( + + ); +} +``` + +**IF.armour Application:** +Multi-agent consensus requires initial baseline alignment before enhanced analysis: + +```python +def consensus_workflow(threat): + # Stage 1: Baseline scan (SSR equivalent - deterministic, universal) + baseline_threats = baseline_scan(threat) + + if not baseline_threats: + return {"action": "PASS", "agents": "baseline"} + + # Stage 2: Multi-agent consensus (CSR equivalent - enhanced, context-aware) + agent_votes = [agent.evaluate(threat) for agent in agent_panel] + + if quorum_reached(agent_votes, threshold=0.80): + return {"action": "INVESTIGATE", "confidence": calculate_confidence(agent_votes)} + else: + return {"action": "VETO", "reason": "consensus_failure"} +``` + +**Philosophy:** Coherentism (Quine)—beliefs justified through network coherence. SSR/CSR mismatches create contradictions (hydration errors); multi-agent contradictions undermine trust. Alignment ensures coherent state transitions. + +#### Principle 6: Progressive Enhancement + +**Definition:** Core functionality stands without enhancements; features activate only when beneficial. Graduated response scales intervention to threat severity. + +**Implementation Pattern:** +```typescript +// Image.tsx - Progressive enhancement +